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Abstract

This paper describes how to simulate and control the two DoF inverted pendulum system, a
dynamics of multibody system. The control strategy used is based on the conventional feedback
method for the stabilisation of the two DoF inverted pendulum system. Simulation study has
been done shows that conventional method i.e. pole placement control strategy is capable to
control multi input and multi output of the two DoF inverted pendulum system successfully. The
result shows that pole placement control strategy gives satisfactory response that is presented
in time domain.
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Abstrak

Pada tulisan ilmiah ini dijelaskan bagaimana teknik mensimulasikan dan mengendalikan sebuah
sistem pendulum terbalik dua derajat kebebasan yang merupakan sebuah sistem multi bodi
yang sangat dinamis. Teknik pengendalian yang dipergunakan untuk menstabilkan sistem
pendulum terbalik dua derajat kebebasan pada penelitian ini adalah teknik umpan balik yang
umum dipergunakan dalam ilmu kontrol yaitu teknik penempatan akar persamaan (pole
placements control strategy). Hasil simulasi yang telah dilakukan menunjukkan bahwa teknik
penempatan akar persamaan ini dapat mengendalikan dengan baik sebuah sistem pendulum
terbalik dengan dua derajat kebebasan yang merupakan sistem multi input dan multi output.
Tingkat pengendalian terhadap sistem juga sangat memuaskan, hal ini dapat dilihat dari grafik-
grafik hasil simulasi yang disajikan dalam kurva setiap variable sistem terhadap waktu.

Kata Kunci: Pendulum Terbalik, Pole Placement Control, Sistem Dinamis, Sistem Multi Bodi

Introduction
A cart mounted inverted pendulum is

relatively simple mechanical system which is
inherently unstable and defined by highly
nonlinear dynamic equations [1]. The
inverted pendulum model has been widely
used as a teaching aid and in research
experiments around the world. It is a suitable
process to test prototype controllers due to
its high non-linearities and lack of stability [2].
It is well established benchmark problem that
provides challenging problems to control
design.

To understand fundamental building
of the dynamic of the inverted pendulum
system is started by undertaking the
simulation of common or classic inverted
pendulum system as shown in Figure 1. This
model system is simpler as it only has two
DoF: one DoF rotation moving of the
pendulum and one DoF horizontally moving
of the cart [3]. A fundamental of this works is
to investigate and demonstrate the use of
conventional or classical control theory which

is based on the input-output relationship to
control very dynamic unstable system such
as inverted pendulum. For the inverted
pendulum system, the pendulum angle and
the cart velocity or position need to be
controlled and thus requires a multi-output
system which is relatively simple to solve
with state space method. Thus in this paper
will be derived the mathematical model of the
inverted pendulum in the state space form
with pole placement or pole assignment
control technique for controlling the cart
velocity to follow on the desired velocity while
maintaining the angle of the pendulum as 0°
(upright pendulum position).

Mathematical Modelling
The system consists of an inverted

pole with mass, m, hinged by an angle θ
from vertical axis on a cart with mass, M,
which is free to move in the x direction as
shown in Figure 1. A force, F, is required to
push the cart horizontally and dynamic
equations relationship between the cart and
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inverted pendulum are required so that it is
possible to keep the pendulum upright stable
while the cart moves by following a set
reference of velocity point or desired path.

Figure 1 The two DoF inverted pendulum
system

To derive dynamic equations or
mathematical model for an inverted
pendulum system considers the free body
diagram shown in figure 2.

Figure 2 Free body diagram of the system

Summing forces of the cart in horizontal
direction, based on the Newton law get:

FNxbxM   (1)

Summing forces of the pendulum in
horizontal direction:

Nmlmlxm   sin2cos  (2)

Substituting N in equation (2) into equation
(1) get the first dynamic equation for the
system:

  FmlmlxbxmM   sin2cos  (3)

Summing forces perpendicular to the
pendulum:

 cossincossin xmmlmgNP   (4)

Summing moments around CG of the
pendulum gets:

 INlPl  cossin (5)

Combining equations (4) and (5) get the
second dynamic equation for the system:

   cossin2 xmlmglmlI   (6)

Since the inverted pendulum must be kept on
vertical, therefore it is assumed that  t and

 t are very small quantities such that

 sin , 1cos  and 0  .Thus
dynamic equations above will become
(where u represent input):

  xmlmglmlI   2 (7)

  umlxbxmM   (8)

To build state space modelling of the system,
the task is to derive the elements of the
matrices, and to write the system model in
the form:

ẋ = Ax + Bu (9)
y = Cx + Du (10)

The matrices A and B are properties of the
system and are determined by the system
structure and elements. The output equation
matrices C and D are determined by the
particular choice of output variables.
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To get state space model form of the
inverted pendulum system, we need to
eliminate  from dynamic equations (7) and
(8) to get equation for x and vice versa as
below. Eliminating  from equations (7) and
(8) gives:
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Eliminating x from equations (7) and (8)
gives:
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Define state variables, with xx 1

and 3x , can be obtained from equations
(11) and (12) as:
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Then the state space equations can be
presented as:
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Pole Placement Control Strategy
Controller of the pendulum system

can be designed by using the controller
design method of the pole placement or the
pole assignment technique. The pole
placement strategy is to put the poles of the
closed loop system on the desired location
by the state feedback through the
appropriate state feedback gain matrix if the
given system is perfectly controllable. When
the system model is given as shown in the
formula:

BuAxx  (15)

The state feedback controller is as:

Kxu  (16)

This means that the control signal u is
determined by an instantaneous state. It
called state feedback. The state feedback
gain matrix K that is to design the controller
has dimension 1×n and n is the number of
the state. Substitute equation (15) into
equation (16) the result is:

     txBKAtx  (17)

The solution of this equation is given by:

     0xtBKAetx  (18)

Where, x(0) is the initial state caused by
external disturbances. The stability and
transient response characteristics are
determined by the eigenvalues of matrix A -
BK. If matrix K is chosen properly, the matrix
A - BK can be made an asymptotically stable
matrix, and for all x (0) ≠ 0, it is possible to
make x(t) approach 0 as t approaches
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infinity. Schematic block diagram of this type
of control system is shown in figure 3.

Figure 3 Schematic block diagram of closed
loop control in state space form [4]

In this work to simulate the inverted
pendulum system, let’s assume the inverted
pendulum properties are as:

M mass of the cart 13.26 kg
m mass of the pendulum 2.88 kg
b friction of the cart 0.0 N/m/sec
l length to pendulum CG 0.21 m
I inertia of the pendulum 0.04 kg*m2

Substituting all the inverted pendulum
parameter values above into equations (13)
and (14) and considering the cart position as
outputs to the inverted pendulum state space
model becomes:

u

x

x

x

x

x

x

x

x















































































2596.0

0

0717.0

0

4

3

2

1

00617.4100

1000

05387.100

0010

4

3

2

1









(19)

  u

x

x

x

x

y 





























0

0

4

3

2

1

0100

0001
(20)

The poles of this model are:

p =    0   0    6.4079 -6.4079

As can be seen there is a one pole laying in
the right hand plane at 6.4079 thus the
system is open loop very unstable. To
stabilise the dynamics of the inverted
pendulum plant obviously requires some of
feedback controllers to be designed. This
problem can be solved by finding a suitable
K matrix using a full state feedback type 1

servo system. The schematic block diagram
of this control is as shown in Figure 4 below.

Figure 4 Full state feedback type 1 servo
system [4]

Where r represents the reference
input signal to the cart. The four states
 4,3,2,1 xxxx represent position of the cart,
velocity of the cart, pendulum’s angle and
angular velocity of the pendulum and y
represents the output signal. A controller
have to be designed so that when reference
input is given to the system, the pendulum
should be displaced, but eventually return to
zero (upright) and the cart should move with
its position or velocity as commanded in the
reference input.

In the pole placement method, pole
locations can be arbitrarily placed if and only
if the inverted pendulum plant is controllable.
Therefore the controllability matrix of the
plant is determined first before calculating
the feedback gain matrix K. The
controllability matrix is given as:

 BnABAABBM 1....2  (21)

If M is nonzero the plant is controllable
From the equation (19) the state space
model get:
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And the determinant solution gives that
|M|=0.4362, thus the inverted pendulum plant
is controllable and arbitrary pole placement is
possible.

Referring to figure 4 the state
feedback control law for the inverted
pendulum with set point or tracking is:

IkKxu  (22)

yr  (23)

In which r is the input signal reference to be
tracked by y, thus ξ represents integral of the
tracking error. For type servo system 1 state
error equations is given as:

euBeAe ˆˆ  (24)
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The control signal is given by equation:

eKeu ˆ (25)

Where,

   IkkkkkIkKK  4321
ˆ

In order to get a reasonable speed and
damping in the response of the designed
inverted pendulum plant system, the desired
closed-loop poles were chosen to be at = i
( =1,2,3,4.5), where:

1 = −7 + 7i, 2 = −7 − 7i, 3 = −7, 4 = −7, 5= −7

And the state-feedback gain matrix is
calculated by using the Ackerman command
to calculate the state feedback gain matrix K.
The calculation gives result feedback gains
to control the designed inverted pendulum
system as:

   
 7.65953.5582.33474.15332.4714

,4,3,2,1,ˆ



 ikkkkkikKK

Result
The simulation result when the step

response input gives to the system is as
shown in Figure 5. The graph shows that the
pendulum rod can be stabilised at zero point
at about 2 seconds while the cart can be
stabilised successfully as well and reaches
the new position as the reference input at
1m.
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Figure 5 Simulink state variables step
response

When the cart is given a prescribed
velocity, the state variables response result
is as shown in Figure 6.

(a) Cart Position x1

(b) Cart Velocity x2

(c) Pendulum Angle x3

(d) Pendulum Angular Velocity x4

Figure 6. Simulink state variables result for
cart velocity reference
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This graph shows that the cart
velocity lags about 0.5 seconds from the cart
velocity reference. However the cart velocity
can be controlled successfully to track the
reference given while at the same time
stabilised the angle pendulum rod in upright
position.

Conclusion
Based on simulation results, it can

be said that the pole placement method can
be useful to design controllers for the two
DoF inverted pendulums with satisfactory
performance. The result shows that pole
placement is capable of controlling the two
DoF inverted pendulum's angle and the cart's
position or velocity. But a problem still exists
when the two DoF inverted pendulum system
is given a prescribed velocity this leads to the
cart’s velocity lagging the input by about 0.5
second.
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