Peluang dan tantangan aplikasi baut tulang mampu terdegradasi berbasis logam magnesium

A. Hermanto, Y. Burhanudin, I. Sukmana

Abstract


This paper reviews the potential and challenges for the application of biodegradable bone screw materials. Currently, in the field of medical sciences and biomedical engineering devices, a non-degradable bone screw is the most acceptable concept to repair a bone fracture. However, with the new intervention and development of advanced materials, either in polymer-based or metallic-based, opens a possibility to use a degradable bone screw. Magnesium-based material is one of the most promising candidates for biodegradable bone screw application, which is the main focus of this paper. Casting technologies for producing magnesium alloys will also highlighted.

Full Text:

PDF

References


Anker C. J., Holdridge S. P., 2005, Ultraporous beta-tricalcium phosphate is well incorporated in small cavitary defects, Clin. Orthop. Relat. Res. 434, 251-257

Black J., 1998, Orthopaedic Biomaterials in Research and Practice, New York: Churchill Livingstone

Doblare M., 2004, Modelling bone tissue fracture and healing: a review, Engineering Fracture Mechanics 71, 1809–1840.

Denkana A., Thorey F., Waizy H., Angrisani N., Lindenberg A. M., 2011, Biocompatible Magnesium Alloys as Dagradable Implant Material – Machining Induced Surface and Subsurface Properties and Implant Permormance, Spesial Issue on Magnesium Alloys, 109-128.

Fan Z., 2005, Development of the rheo-diecasting process for magnesium alloys. Mater. Sci. Eng. A 413, 72–78.

Gu X., Zheng Y., Cheng Y., 2009, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials 30(4), 484–498.

Gupta M., Lai M., Saravanaranganathan D., 2000, Synthesis, microstructure and properties characterization of dis-integrated melt deposited Mg/SiC composites, J. Mater. Sci. 35, 2155–2165.

Hu B. H., 1998, Squeeze Casting of Al-Si-Cu- Fe-Mn-Mg Alloy, Journal of Processing and Fabrication of Adv. Mater. VI vol. 1.

Kim S. R., Lee J. H., Kim Y. T., Rui D. H., Jung S. J., Lee Y. J., Chung S. C., Kim Y. H., 2003, Synthesis of Si, Mg substituted hydroxypatatite and their sintering behaviors, Biomaterials 24, 1389– 1398 .

Luo A., 2013, Magnesium casting technology for structural applications, Journal of Magnesium and Alloys 1, 2-22.

Meenashisundaram G. K., Sankaranarayanan S., Gupta M., 2014, Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates, Mater. Charact. 94, 178–188.

Nguyen Q., Gupta M., 2008, Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates, Compos. Sci. Technol. 68, 2185–2192

Reksoprawiro S., 2006, Bedah Kepala Leher XI, Penggunaan Miniplate pada Penata-laksanaan Fraktur Maxilofacial, Farmacia, Vol.7 No.1, 56-57.

Rimondini L., Nicolo N. A., Milena F., Gaetano G., Matilde T., Giordino R., 2004, In Vivo Experemental Study on Bone Regeneration in Critical Bone Defects using An Injectable Biodagradable PLA/PGA Copolymer, Oral Surgery, Bologna Instituti Orthopedic Giardino

Song G., 2007, Control of Biodegradation of biocompatible magnesium alloys, Corros. Sci. 49, 1696-1701.

Witte F., Hort N., Vogt C., 2008, Degradable biomaterials based on magnesium corrosion, Current Opinion in Solid State and Materials Science, 12(5–6), 63–72.

Wittenberg J. M., Wittenberg R. H., 1991, Biomechanical properties of resorbable poly-Llactide plates and screws: a comparison with traditional systems, J. Oral Maxillofac. Surg. 49, 512-516.

Zhao J.; Zhiyuan Z., Shaoyi W., Xiaojuan S., Xiuli Z., Chen J., Kaplan D., Jiang X., 2009, Apatite-Coated Silk Fiboin Scaffolds to Heating Mandibular Border Defect in Canines, Bone 45, 517-527.




DOI: https://doi.org/10.29303/dtm.v6i2.11

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Dinamika Teknik Mesin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.