Simulasi parameter geometri regenerator mesin termoakustik

N. Nurpatria, S. Syahrul, P. Pandiatmi, I.M.A. Sayoga, A. Mulyanto


The utilization potentials of biomass energy in Indonesia is very large. As modeled in this paper, the energy carrier flue gas from biomass combustion in the form of heat and temperature is applied as thermodynamic source for the thermoacoustic engine model. Therefore, 33 different models were constructed, modified, and tested in DELTA-EC software simulation in order to reveal their capability. The performance based on the criterion of their acoustic power output and efficiency in a set of various combination of two regenerator geometry parameters applied, radial cross-sectional area and length. The simulation results show that greater the cross-sectional area, greater the acoustic power and engines efficiency. The smallest regenerator size is at 80 mm2 cross-sectional area and 54 mm length, generates acoustic power of 5.812 W with its corresponding efficiency of 0.686%. While the biggest regenerator in volume at 120 mm2 and 165 mm in size, be able to amplified acoustic power up to 22.810 W with efficiency of 2.693%. An engine model with the highest performance produces acoustic power of 25.848 W and efficiency of 3.051%. This model uses an optimal regenerators dimension with 120 mm2 area at length of 150 mm.


Biomass; Simulation; DELTA-EC; Thermoacoustic engine; Regenerator

Full Text:



Backhaus S., Swift G.W., 1999, A thermoacoustic Stirling heat engine, Nature, 399, 335-338

Backhaus S., Swift G.W., 2000, A thermoacoustic Stirling heat engine: Detailed Study, JASA, 107(6), 3148-3166

Ceperley P.H., 1979, A pistonless Stirling engine – The traveling wave heat engine, JASA, 66(5)

Siregar K., Alamsyah R., Ichwana, Sholihati, Tou S.B., 2017, Rancang bangun mesin pembangkit listrik tenaga biomassa pada daerah terisolasi, Prosiding Seminar Nasional FKPT-TPI 2017, Kendari, 150-162

Hao H., Scalo C., 2018, Standing-wave and traveling-wave thermoacoustics in solid media, JASA, 144

Napolitano M., Dragonetti R., Romano R., 2017, A method to optimize the regenerator parameters of a thermoacoustic engine, Energy Procedia, 126(201709), 525-532

Swift G.W., 2001, Thermoacoustics: A unifying perspective for some engines and refrigerators, Fifth Draft, Los Alamos USA

Timmer M.A.G., Meer T.H., Blok K.D., 2018, Review on the conversion of thermoacoustic power into electricity, JASA, 143(2)

THATEA, 2012, Thermoacoustic Technology for Energy Applications, ECN Netherlands

Ward B., Clark J., Swift G.W., 2008, Design Environment for Low-Amplitude Thermoacoustic Energy Conversion (DELTA-EC) Version 6.2, Los Alamos USA

Wu Z., Dai W., Man M., Luo E., 2012, A solar powered traveling wave thrmoacoustic electricity generator, Solar Energy, 86(9), 2376-2382

Yazaki T., Iwata A., Maekawa T., Tominaga A., 1998, Traveling wave thermoacoustic engine in a looped tube, Physical Review Letters, 81(15), 3128-3131

Yudiartono, Anindhita, Sugiyono A., Wahid L.M.A., Adiarso, 2018, Outlook Energi Indonesia 2018, BPPT Indonesia

Yu Z., Jaworski A.J., Backhaus S., 2010, A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine, Proceedings IME Part-A Power and Energy 2010, 224-787



  • There are currently no refbacks.

Copyright (c) 2019 Dinamika Teknik Mesin: Jurnal Keilmuan dan Terapan Teknik Mesin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.