Simulasi parameter geometri regenerator mesin termoakustik
Abstract
The utilization potentials of biomass energy in Indonesia is very large. As modeled in this paper, the energy carrier flue gas from biomass combustion in the form of heat and temperature is applied as thermodynamic source for the thermoacoustic engine model. Therefore, 33 different models were constructed, modified, and tested in DELTA-EC software simulation in order to reveal their capability. The performance based on the criterion of their acoustic power output and efficiency in a set of various combination of two regenerator geometry parameters applied, radial cross-sectional area and length. The simulation results show that greater the cross-sectional area, greater the acoustic power and engines efficiency. The smallest regenerator size is at 80 mm2 cross-sectional area and 54 mm length, generates acoustic power of 5.812 W with its corresponding efficiency of 0.686%. While the biggest regenerator in volume at 120 mm2 and 165 mm in size, be able to amplified acoustic power up to 22.810 W with efficiency of 2.693%. An engine model with the highest performance produces acoustic power of 25.848 W and efficiency of 3.051%. This model uses an optimal regenerators dimension with 120 mm2 area at length of 150 mm.
Keywords
Full Text:
PDFReferences
Backhaus S., Swift G.W., 1999, A thermoacoustic Stirling heat engine, Nature, 399, 335-338
Backhaus S., Swift G.W., 2000, A thermoacoustic Stirling heat engine: Detailed Study, JASA, 107(6), 3148-3166
Ceperley P.H., 1979, A pistonless Stirling engine – The traveling wave heat engine, JASA, 66(5)
Siregar K., Alamsyah R., Ichwana, Sholihati, Tou S.B., 2017, Rancang bangun mesin pembangkit listrik tenaga biomassa pada daerah terisolasi, Prosiding Seminar Nasional FKPT-TPI 2017, Kendari, 150-162
Hao H., Scalo C., 2018, Standing-wave and traveling-wave thermoacoustics in solid media, JASA, 144
Napolitano M., Dragonetti R., Romano R., 2017, A method to optimize the regenerator parameters of a thermoacoustic engine, Energy Procedia, 126(201709), 525-532
Swift G.W., 2001, Thermoacoustics: A unifying perspective for some engines and refrigerators, Fifth Draft, Los Alamos USA
Timmer M.A.G., Meer T.H., Blok K.D., 2018, Review on the conversion of thermoacoustic power into electricity, JASA, 143(2)
THATEA, 2012, Thermoacoustic Technology for Energy Applications, ECN Netherlands
Ward B., Clark J., Swift G.W., 2008, Design Environment for Low-Amplitude Thermoacoustic Energy Conversion (DELTA-EC) Version 6.2, Los Alamos USA
Wu Z., Dai W., Man M., Luo E., 2012, A solar powered traveling wave thrmoacoustic electricity generator, Solar Energy, 86(9), 2376-2382
Yazaki T., Iwata A., Maekawa T., Tominaga A., 1998, Traveling wave thermoacoustic engine in a looped tube, Physical Review Letters, 81(15), 3128-3131
Yudiartono, Anindhita, Sugiyono A., Wahid L.M.A., Adiarso, 2018, Outlook Energi Indonesia 2018, BPPT Indonesia
Yu Z., Jaworski A.J., Backhaus S., 2010, A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine, Proceedings IME Part-A Power and Energy 2010, 224-787
DOI: https://doi.org/10.29303/dtm.v9i2.299
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Dinamika Teknik Mesin: Jurnal Keilmuan dan Terapan Teknik Mesin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.