Konduktivitas termal komposit resin epoksi dan serbuk arang tempurung kelapa

M. Mirmanto, S. Sugiman, F. Fathurrahman, M.D. Ramadhani

Abstract


Composite materials are materials that are widely developed and their use has been widespread in various industrial and household sectors. Epoxy composites filled with coconut shell charcoal powder have been tested for their thermal conductivity properties using the one-dimensional conduction method. The tested specimens had dimensions of 50 mm x 50 mm x 5 mm made of epoxy and coconut shell powder with a percentage of charcoal weight of 0%, 10%, 20% and 30%. The specimen is inserted into a thermal conductivity measuring instrument made of solid aluminum which is insulated around it. The heater is mounted on the aluminum as a heat source, while the other end is left open to the free air in the room. The results showed that the highest average thermal conductivity was a 30% variation of 0.5003 W/m°C, then a 20% variation of 0.3738 W/m°C, a 10% variation of 0.3487 W/m°C. and the lowest at 0% variation without using coconut shell charcoal powder at 0.1364 W/m°C.

Keywords


Epoxy composite; Thermal conductivity; Weight presentage; Coconut shell powder filler

Full Text:

PDF

References


Alberto, D., Koto, B., Suryadimal, S., Analisa konduktivitas thermal material komposit serat sabut kelapa dengan perlakuan alkali dan resin poli ester, Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas Bung Hatta, 2015.

Cengel, Y.A., Ghajar, A.J., Heat and mass transfer, Penerbit McGraw-Hill Education, New York, 2015.

Ekalinda, O., Teknologi pembuatan arang tempurung kelapa, Balai Pengkajian Teknologi Pertanian (341), 2001.

Handoyo, K., Material komposit, Jurusan Teknik Material dan Metalurgi, ITS. Surabaya, 2008.

Holman, J. P., (1991). Perpindahan Kalor, Ed. 6, Jakarta: Erlangga.

Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S., Fundamental of heat and mass transfer, Sixth Edition, John Wiley and Sons, USA, 2006.

Matsuzawa, Y., Mae, K., Hasegawa, I., Suzuki, K., Characterization of carbonized municipal waste as substitute for coal fuel, Fuel, 86(1–2), 264–72, 2007.

Mirmanto, M., Sugiman, S., Ramadhani, M.D., Fathurrahman, F., Variasi persen berat tempurung kelapa terhadap konduktivitas termal komposit silicone rubber, Dinamika Teknik Mesin: Jurnal Keilmuan dan Terapan Teknik Mesin, 11(2), 107-115, 2021.

Rout, T., Pradhan, D., Singh, R.K., Kumari, N., Exhaustive study of products obtained from coconut shell pyrolysis, Journal of Environmental Chemical Engineering 4(3), 3696–3705, 2015.

Saad, A., Analisa konduktivitas panas komposit sabut kelapa dan resin polyester dengan variasi tekanan dan waktu uji, Jurnal Teknik Mesin, ITP, 2015.

Sholikah, R.I., Setyarsih, W., Istiqomah, Hefdea, A., Wulancahayani, E., Rohmawati, L., Stabilitas termal dan kristalinitas komposit polyvinylidene fluoride) PVDF/SiO2 pasir vulkanik Kelud, Sains & Matematika, 5(2), 42-46, 2017.

Kristianta, F.X., Kristian, A., Sholahuddin, I., Variasi ukuran terhadap kekerasan dan laju keausan komposit epoxy aluminium-serbuk tempurung kelapa untuk kampas rem, Skripsi Universitas Jember, 2017.

Winarno, F.D., Pengaruh termal siklik komposit matrik polyester dengan aditif partikel msontmorillonite bberpenguat serat sabut kelapa, Skripsi Universitas Jember, 2015.




DOI: https://doi.org/10.29303/dtm.v12i1.502

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 M. Mirmanto, S. Sugiman, F. Fathurrahman, M.D. Ramadhani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 
 

After being re-accredited, the Journal of Dinamika Teknik Mesin, still has sinta 3 (S3) which is valid until 2025, but certificates and decrees have not been issued.