Pengaruh variasi ketebalan saluran dan temperatur tuang terhadap fluiditas dan porositas hasil pengecoran kuningan pada pengecoran evaporatif

I.K. Sugita, M. Mara, I.G.N. Priambadi, I.M. Nuarsa


The development of foundry technology continues to grow along with the increasingly complex needs for making products based on art and culture, one of which is sclupture. Evaporative casting based on non-permanent patterns made of polystyrene foam, with the advantage of precision casting results in complex shapes. The purpose of this study was to determine how variations in the pouring channel and pouring temperature affect the fluidity and porosity of brass castings in evaporative casting. Casting was carried out in castings with thicknesses of 1.5, 2, 3, 4, and 5 mm at pouring temperatures of 900°C, 950°C, and 1000°C using brass with a composition of Cu60% and Zn40%. The highest fluidity was found at a pattern density of 0.012 gr/cm3 at a pouring temperature of 1000°C with a flow length of 150 mm, while the lowest fluidity was obtained at a pattern density of 0.016 gr/cm3 at a pouring temperature of 900°C with a flow length of 13 mm. The results of scanning electron microscope (SEM) observations can be observed in spesimens with a density of polystyrene foam and a high casting temperature, an increase in the porosity formed.


Evaporative casting Polystyrene Foam Brass

Full Text:



Akhyar, Iqbal, Nurdin, A., Husni, H., Effect of variations in pouring temperature on tensile strength of CuZn cast alloy, Jurnal Elsevier Material Letter, 10(17), 2023.

Ashar, L., Purwanto, H., Respati, S., Analisis pengaruh model sistem saluran dengan pola styrofoam terhadap sifat fisis dan kekerasan produk puli pada proses pengecoran aluminium daur ulang, Jurnal Momentum UNWAHAS, 8(1), 48-55, 2018.

Campbell, J., Fluidity molten metal, Complete Casting Handbook, University of Birmingham, 1994.

Campbell, J., Harding, R. A., The fluidity of molten metals, Training in aluminium application technologies, ASM Metal Handbook (15), 1994.

Flemings, M.C., Solidification processing, Metall Trans., 5(10), 2121–2134, 2018,

Jacob, E., Chiniwar, D.S., Savithri, S., Manoj, M., and Sasikumar R., Simulation-based feeder design for metal castings, Indian foundry J., 59(12), 1–6, 2013.

Junaidy, I., Pengaruh kerapatan polystyrene foam terhadap mampu alir dan kualitas coran paduan aluminium 356.1 yang dicor dengan metode evaporative, Mekanika, 9(1), 243–246, 2010.

Pacyniak, T., Kaczorowski R., Effect of pouring temperature on the lost foam process, Arch Foundry Eng, 11(3), 149–154, 2011.

Puspitasari, P., Permanasari, A.A., Andoko, P.B.A., Properties of brass under different pouring temperature in sand casting process. Journal of Mechanical Engineering Science and Technology, 1(2), 95-99, 2017

Priambadi, I.G.N., Sugita, I.K.G., Bagus, I., Asmara, G., Dewi, A.A.I.A.S.K., Pengaruh temperatur penuangan terhadap fluiditas dan struktur mikro logam kuningan pada metode evaporative casting, Jurnal Energi dan Manufaktur, 10(2), 71–75, 2018.

Patel, A.G., Poonawala T.Y., Sanghani, D.V., Sukhadia, D.V., Simulation and experimentation casting feeder design project report, Dept. of Mechanical Engineering, Dharmsinh Desai University, Nadiad, 2018.

Pacyniak, T., Effect of foamed pattern density on the lost foam process, Materials Science, 7(3), 231–236, 2017.

Siavashi, K., The effect of casting parameters on the fluidity and porosity of aluminum alloys in the lost foam casting process, Ph.D thesis of Faculty of Engineering of The University of Birmingham, 2011.

Sutiyoko, Metode pengecoran lost foam menjawab tantangan dunia, Foundry, 3(1), 21–29, 2013.



  • There are currently no refbacks.

Copyright (c) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

After being re-accredited, the Journal of Dinamika Teknik Mesin, still has sinta 3 (S3) which is valid until 2025.
View My Stats